Sensitivity analysis

By Xinran Miao in Causal inference Microbiome Sensitivity analysis in mediation analysis

December 4, 2022

Following Imai, K., Keele, L. and Yamamoto, T.(2010), we discuss the sensitivity analysis in mediation models.

Recall: mediation models

For unit ii in a random sample of size nn, we denote Ti{0,1}T_i\in\{0,1\} as the treatment indicator, XiX_i is pre-treatment covariate, MiM_i is the mediator, μiRK\mu_i\in\mathcal{R}^{K} is transformed from an compositional outcome with KK entries. Then the mediation model assumes (1) and (2), where α\alpha’s and β\beta’s are parameters, εim\varepsilon_i^m and εμi\varepsilon^i_{\mu} are errors.

mi=α0+αTTi+αXTXi+εim(1)\begin{equation} m_i = \alpha_0 + \alpha_T T_i + \alpha_X^TX_i + \varepsilon_i^{m} \tag{1} \end{equation}

μi=β0+βTTi+βXTXi+βMTMi+εiμ(2)\begin{equation} \mu_{i} = \beta_0 + \beta_T T_i + \beta_X^TX_i + \beta_M^TM_i + \varepsilon_i^{\mu} \tag{2} \end{equation}

Sensitivity in terms of correlations

Let UiU_i be unmeasured confounder, then when the sequential ignorability assumption is violated, we can rewrite error terms for taxon kk as

εikμ=λkμUik+ε~ikμεikm=λkmUik+ε~ikm,\begin{align*} \varepsilon_{ik}^{\mu} &= \lambda^{\mu}_k U_{ik} + \tilde{\varepsilon}_{ik}^{\mu}\\ \varepsilon_{ik}^m &= \lambda^m_k U_{ik} + \tilde{\varepsilon}_{ik}^m, \end{align*} where Cov(ε~ikμ,ε~ikm)=0\text{Cov}(\tilde{\varepsilon}_{ik}^{\mu}, \tilde{\varepsilon}_{ik}^{m})=0, λkμ\lambda_{k}^{\mu} and λkm\lambda_k^m are unknown parameters.

We define the sensitivity parameter ρk\rho_k to be their correlation

ρk=Cor(εikμ,εikm),(3)\begin{equation} \rho_k = \text{Cor}(\varepsilon_{ik}^{\mu},\varepsilon_{ik}^m), \tag{3} \end{equation}

which after some calculation, can be formulated as

ρk=sgn(λkμλkm){1var(εikm~)var(ϵ~ikm)}{1var(ε~ikμ)var(ϵ~ikμ)}.\begin{align*} \rho_k &= \text{sgn}(\lambda^{\mu}_k\lambda_k^m)\left\{1-\dfrac{\text{var}(\tilde{\varepsilon_{ik}^m})}{\text{var}(\tilde{\epsilon}_{ik}^m)}\right\}\left\{1-\dfrac{\text{var}(\tilde{\varepsilon}_{ik}^{\mu})}{\text{var}(\tilde{\epsilon}_{ik}^{\mu})}\right\}. \end{align*}

Posted on:
December 4, 2022
Length:
1 minute read, 197 words
Categories:
Causal inference Microbiome Sensitivity analysis in mediation analysis
See Also: